Clinical and Evidence Based Guidelines for Seating and Wheeled Mobility

Jan Furumasu, PT, ATP

What are the Goals?

- Optimal postural alignment/ visual field
- Provide Comfort and stability
- Prevent pressure sores
- Means of mobility/transportation
- Improve physiological functions eg breathing
- Maximize l potential, MRADLs, selfcare, communication
- Inhibit abnormal tone and reflexes impairing alignment and function

Seating The ProcessReferral

- Client Interview/ Medical hx
- Physical Assessment
- Determination of Goals/ Equipment needed
- Equipment Simulation
- Equipment Prescription with Justification
- Ordering and Assembling Equipment
- Equipment Delivery / Training
- Follow-up

Complications of Poor Seating

- Pressure sores
- Deformities or contractures
- Discomfort, pain or fatigue (decreased sitting tolerance)
- Affected performance and tolerance
- Respiratory insufficiency
- Swelling /pressure areas of the feet

Team Approach in Evaluation Process

Physician

- Primary therapist or Assistive Technology Provider (ATP)
- Rehabilitation Technology Supplier RTS, CRTS (ATP)
 Equil (Clicate
- Family/Client

Determine what equipment is medically, functionally necessary.

Client Interview

- General Information
- Medical History
- Environmental Accessibility
- Client / Caregiver Goals
- Existing Mobility Equipment Issues
- Transportation
- Mobility Related Activities of Daily Living (MRADLs) / Self-management Skills
 Funding

Medical History

Diagnosis; progressive vs stable

- Comorbidity factors, HTN, shoulder pain cardio pulmonary issues, severe spasticity
- PAIN: back, shoulders, wrists, sitting tolerance

How long has the patient been diagnosed? (SCI, MS, ALS, Polio, CP)

Physical Evaluation

- ROM/Skeletal deformities
- Muscle Strength Limitations
- Protective sensation, skin integrity
- Proprioception /Balance (hands free)
- Tone/ Spasticity/ primitive reflexes
- Postural Limitations and Compensations
- Orthotics / Splints
- Cognition / Sensory Awareness

Functional Assessment

- Mobility related Activities of Daily Living
 Bladder Management
 Feeding, dressing in the wheelchair, cooking, cleaning, writing, drinking, reaching
- Transfers
- Driving a van from the wheelchair

Transfers

Key Points in Seating

- 1. Pelvis is key
- 2. Three Points of Control
- Control Forces as Far Away from Joint as Possible
- 4. Firm vs. Flexible support surfaces
- Increase Surface Area to disperse pressures
- 6. Accommodation vs Correction of Deformity

Start Proximally

Stable base, Hips. Thighs, Feet
BALANCE: Support/position of trunk, shoulders, head
Movement: Free movement of head, arms and hands

QUESTIONS

- Does the client need to be consistently repositioned? (Problem solve causes for sliding out)
 - Usually inadequate seat depth
 - Seat to back angle, too open encouraging extensor tone.
 - Foot plate position causing tight hamstrings to pull the pelvis forward.

Pelvic Support

Firm vs Flexible Functional posture vs Optimal position

Key Areas to Eval in Supine

- Hip flexion ROM (asymmetries and amount of flexion needed to decrease extensor tone)
- 2. Seat depth (back of hip to popliteal)
 3. Hamstring tone for foot placement (quick stretch into knee extension)

Hip Flexion Asymmetries

Supine Mat Evaluation

Assessing for Seat to Back Angle in Sitting

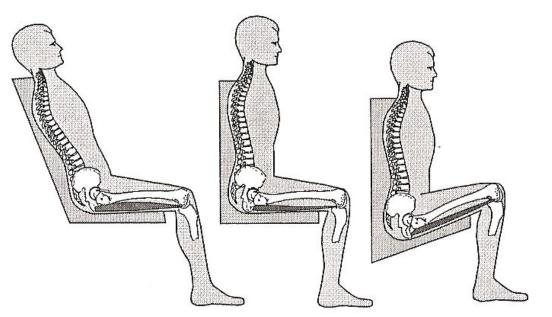
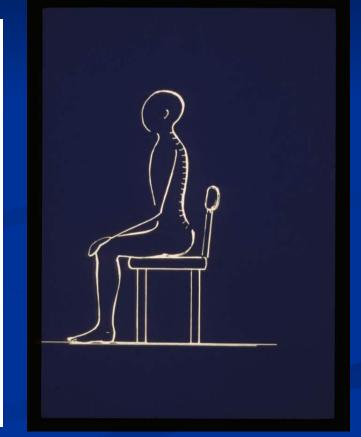



Fig. 44-6 Assessment of hip flexion, tone, and trunk control to deter- ¹⁰⁰⁶⁰ mine seat to back angle.

Seating Assessment

Amount of Indep sitting dictates type of seating and mobility base Hoffer

Hands free sitter

- Hand dependent sitter
- Propped sitter
 - (Don't "overseat" a hands free sitter)

Hands free sitter

Hand dependent Sitter

Propped sitter

Inhibiting Extensor tone

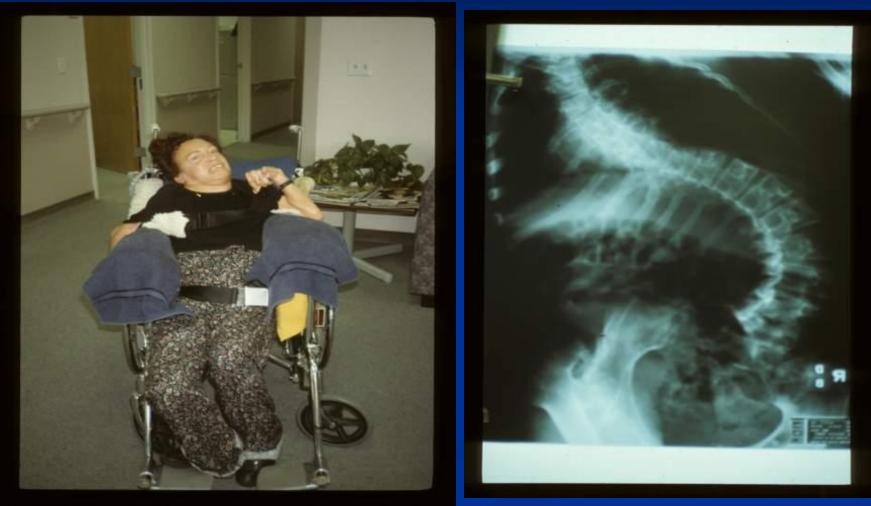
Types of Deformities

II. Spine I. Pelvis A. Tilt A. Kyphosis 1) Posterior 2) Anterior B. Lordosis 3) Neutral B. Rotation C. Scoliosis (rib hump) C. Obliquity (windswept thighs)

3 Points of Control

Kyphosis

- <u>Flexible</u> 3 pt. Control
 anterior chest/ shoulder
 support
- mid thoracic,
 lumbo/sacral support;
 curved back; tilt in
 frame; tray for support
 UEs
- <u>Fixed</u> grid; foam in place;custom molded Jay Care back


Anterior Tilt / Lordosis

 <u>Flexible</u> abdominal support; anterior pelvic belt

 <u>Fixed</u> – custom molded (no trunk control) biangluar back; pelvic belt

Scoliosis, pelvic obliquity windswept hips

3 Point Control to support Scoliosis

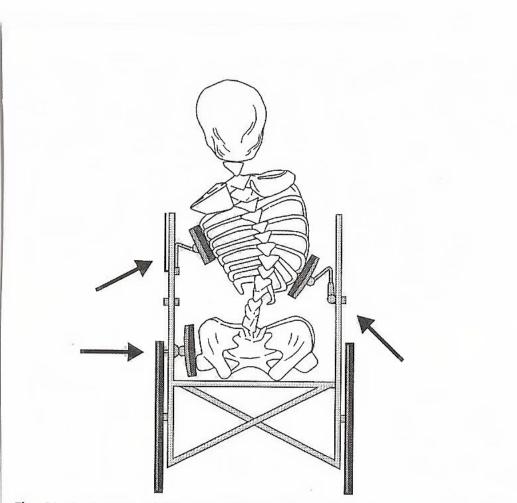
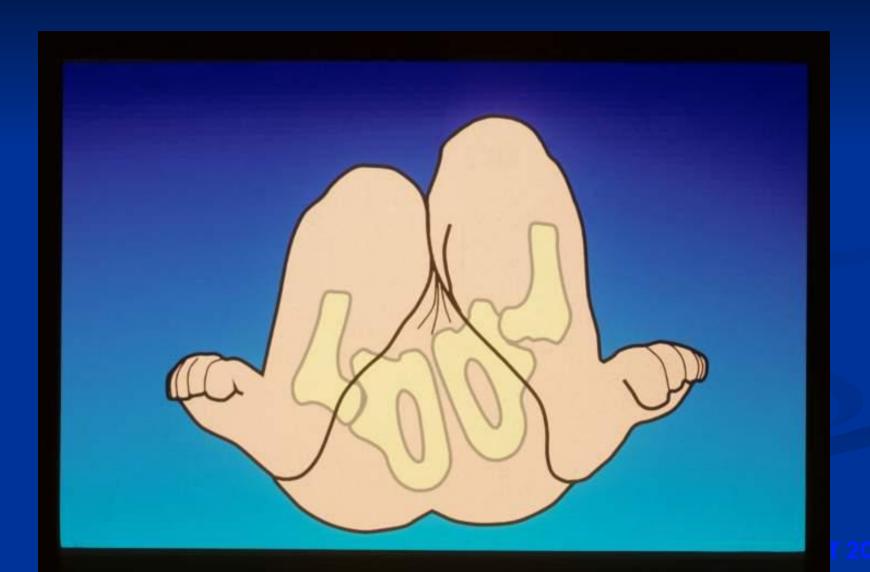


Fig. 44-10 Opposing forces of a three-point control system to control ¹⁰¹⁰⁰ a deformity.

Scoliosis: 3 point control

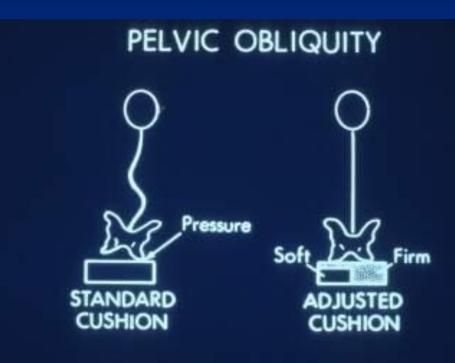
Flexible C curve:

3 point pad system anchor pelvis curved back


Fixed:

custom molded grided back foam in place

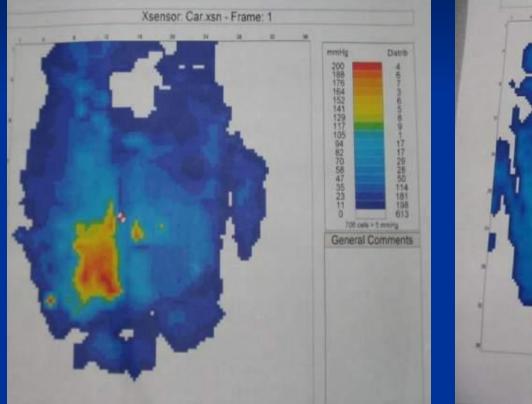
Thoracolumbar C -

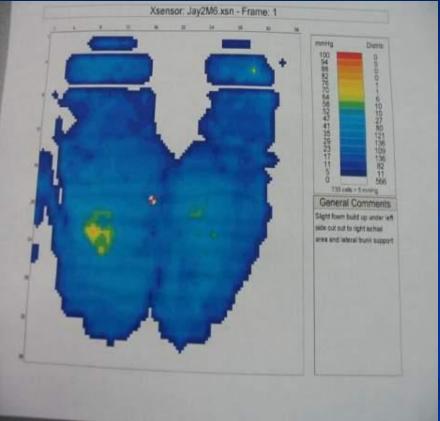

Pelvic rotation and Seat Depth

Pelvic Obliquity

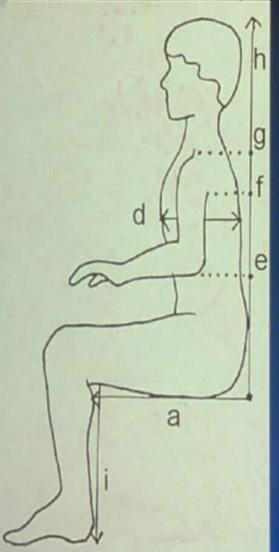
<u>Flexible</u> – firmer
 foam on low side;
 softer foam on high
 side; grid or waffle cut
 on high side; build up
 low side

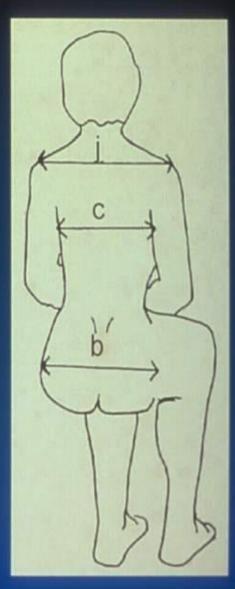
 <u>Fixed</u> – build up on high side or cut down under IT under low side


Accommodation for pelvic obliquity



Accommodation of Pelvic Obliquity


Specialized seating



Client Measurements

- a. seat depth
- b. hip width
- c. chest width
- d. chest depth
- e. seat to elbow
- f. seat to axilla
- g. seat to shoulder
- h. seat to head
 - i. popliteal fossa to heel
 - j. shoulder width

Posterior Tilt

Tone: low
Flexible
Solutions:
Planar or contoured seat
Shoulder retraction
tilt in space of system

Planar seating system

Solid seat Solid back Lateral trunk and hip supports Chest harness Headrest Pelvic belt 45* angle

Posterior Pelvic Tilt and Extensor Thrusting

High tone/flexible

 45* pelvic belt Wedge seat Anti- thrust seat
 Flex hips and knees to 90 + and dorsiflex ankles

Planar/mild contoured system

- Anti thrust seat increase hip flexion
- Solid back
- Medial thigh support inhibits adductor tone
- Lateral hip supports controls pelvis
- 90* hangers accommodates hamstring tightness
- Shoe holders with Angle Adjustable footplates

Custom Molded

Access to Multiple Technologies

Head support systems

- Capital Hyperextension occipital pad;
 Cervical flexion head strap, cap, anterior pad
 Lateral facial pads
- Lateral facial pads

Whitmyer or Stealth head support systems

Back Supports

Power w/c back with scapular cut out

Back supports

Case Study

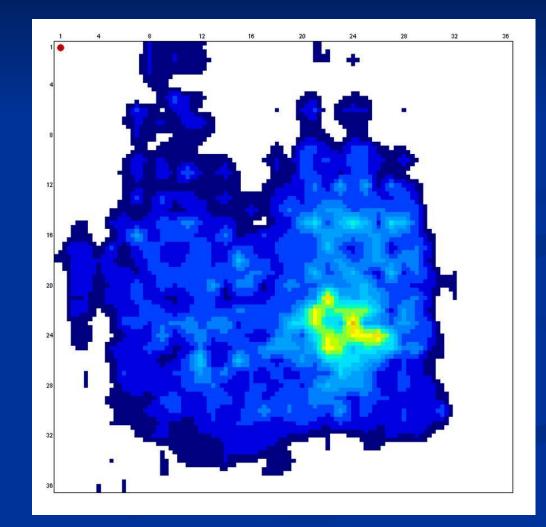
- Dx: Cerebral Palsy
 Problem: sliding down in his seat causing knee pain and arm numbness
- Sitting in custom
 molded seat, using
 right hand joystick
 controller

Accommodate fixed pelvic deformity

Left seat depth 13" Right 18" Asymmetrically cut set and cushion with ischial pressure relief

Tilt in space with custom molded back

Upright trunk and pelvis



Incorporating Pressure Relief into Seating systems

Pressure Ulcers SCI/Elderly most at risk ■ 66% on pelvis Costs to heal: 1,000-7,000/ulcerMedicare 2.2-3.6 billion/yr Ulcers account for $\frac{1}{4}$ cost of SCI care, Prevention < 1/10

Pressure Ulcers

Pressure: Compression Force x Area/Time Shearing/ Friction: Parallel stress, shear occludes blood vessels at deeper level than friction

Temperature/Heat: 1 degree=10% metabolic increase

Moisture/Humidity: causes skin maceration

Factors Contributing to Ulcers

Absent/ impaired sensation Loss of body fat/muscle mass Impaired circulation History of pressure sore

Cognitive
Infections
Immobility
Fragile Elderly skin
Poor nutrition

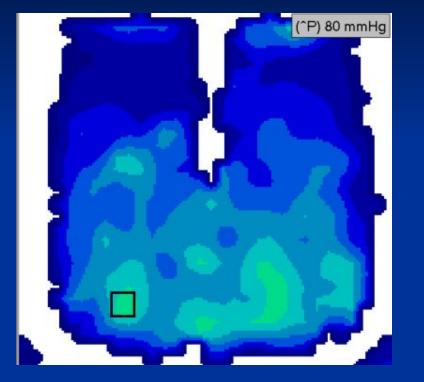
Acceptable Pressures

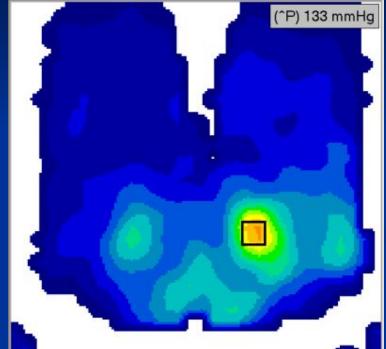
Ischial Tuberosities 40 mmHg
Trochanters 60 mm Hg
Sacrum less than 20 mm Hg
Coccyx 0 mmHg

Types of pressure relief

Pressure distributionby: ImmersionROHO

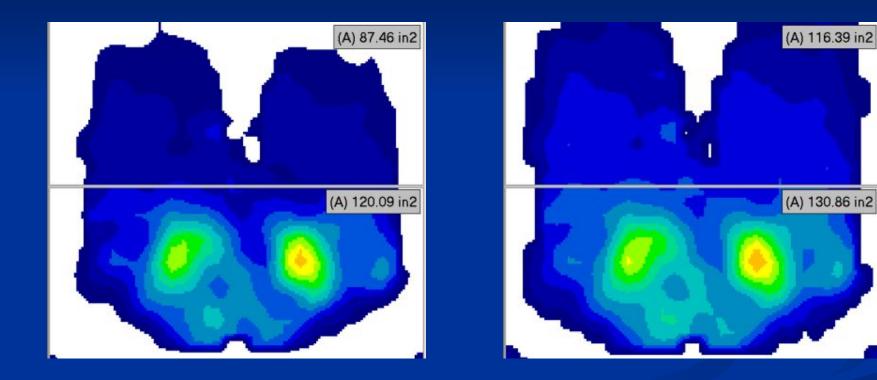
Jay


Motion Concepts Flofit


- Invacare Flovair
- Memory foam

Pressure Redistribution
Foam with cut outs
Ride Designs custom cushions

Peak pressure



Surface contact area

A

В

Area of only the loaded, or "contact" sensels inside the box.

Cushion Assessment

Things to Consider:
Areas of Bony Prominence
Ability to Shift Weight
Stability Provided by the Cushion
Transfer Ability
Trunk Stability

Types of Cushions

Comfort/General Use
Skin Protection
Positioning
Skin Protection/Positioning

Gel Cushions

Contouring for positioning

Temperature and Humidity AireRx

Pressure Relief through Power Seating

Power Seating: Tilt in Space

- Pressure redistribution without sliding. Seat to back angle is maintained
 Accommodates hip/knee flexion
- Minimizes extensor spasticity/shearing
- Maintains orientation to controls

Justification for Recline

- Bladder management Distribute weight bearing surfaces Transfers Open hip and knee angle to manage pain/discomfort Dressing to avoid unnecessary transfers
- Hypotension

Seat Elevation

 Seat elevate for down hill transfers
 Increase UE reach to decrease shid impingement from overhead reaching

Standing Power wheelchairs

RESNA Position Papers

RESNA Position on the Application of:

- Power Wheelchairs for Pediatric Users
- Seat-Elevating Devices for Wheelchair Users
- Wheelchair Standing Devices
- Tilt, Recline, and Elevating Legrests for Wheelchairs

http://www.permobilus.com/Global/USA/FUN DING/Documents/Funding/ResearchArticles

Ultra lightweight rigid wheelchairs

Wheel placement

Chair Assessment

Seat Depth: back post to front edge of seat sling Seat Width: outside seat rail Front Seat Height (FSH) floor to top of front seat rail Rear Seat Height (RSH) floor to top of rear seat rail Seat Slope – difference between FSH & RSH Foot placement affects knee angle

Optimal Wheelchair Configuration

- Posture and alignment
- Backrest: perpendicular to floor
- Adjust the rear axle forward 2"
- Position the rear-axle so that when the hand is placed at the center of the top of the push rim, the upper arm and forearm angle:100 -120 degrees

Wheel Axle placement

"Wheelie Test"

 Have patient pop a wheelie. Want the front casters at least 1" off of the ground.

 If front casters are greater than 4" off of th ground, then the axle is too far back.

Wheelchair skills

Sports wheelchairs

Suspension Wheelchairs

Why is Wheelchair weight important?

- Shoulder Degeneration
- Energy Cost
- Velocity (community propulsion)Transfers in and out of car

Background: Shoulder Pain with SCI

Years since onset

- Carpal Tunnel Syndrome: 40-70%
 Gellman, '88, '92
- Correlates to Median nerve injury

•Boninger, '99, 2003

- Shoulder pain: 31-73%
- Gellman,Bayley, Wylie. Nichols. Sie, Subbarao

Alternative Manual Wheelchair Assist

Power Assisted

Gear Assisted

Power Assist wheels

Energy Consumption

	Rate of O2	Oxygen cost	Heart
	consumption		rate
Standard	8.4 ml/kg	.11 ml/kg m	82
w/c	min		
I- Glide	6.9	.11	72
Xtender	6.7	.07	75
e.motion	6.2	,08	78

Consumer Power: Group 2

Basic criteria Dx: COPD,CHF, Obesity, Rheumatoid arthritis, Diabetes, LE amputation, Osteoarthritis

Rehab Power: Group 3,4

- Basic criteria
- Evaluation by licensed medical professional Neurological dx: Myopathy, SCI, skeletal deformity ie arthrogryposis, Polio

Types of Power W/c Controllers

Proportional Head: RIM Chin: Mini, MEC Hand joystick: remote for center mount Foot proportional Infra red touch pad

Digital Sip and puff Head array: proximity switches Single switches: Mechanical Fiber optic proximity

Proportional chin joystick

Mini joystick controller

RIM head controller

Powered Mobility using Switches

Powered mobility using Switches

Head Access

Foot Access

M.M.

Diagnosis: Cerebral Palsy

Goal:Use head movements for mobility, operation of communication device, and EADL's through wheelchair.

Barriers: Sliding out of wheelchair changing head positon.

Stable positioning for access to technologies

New technologies for Powered Mobility Access

- Brain EMG controlled technology
- Voice technology

Eye gazeTongue Drive System

Single switch scanning

Pediatric Powered Wheelchair Screening Test

Basic Skills: Problems solving = 20 mos Spatial relations = 25 mos Functional skills: Problem solving = 30 mos Spatial relations = 25 mos Cutoffs yield sensitivity = 1.0, specificity = .80

RESNA Position paper on Pediatric Powered Mobility

•Recommends the early utilization of powered mobility for appropriate candidates as medically necessary to promote integration, psycho-social development, reduce learned helplessness and enhance independence.

Segs for Vets

Thank you! jfurumasu@dhs.lacounty.gov

